Multiwii Auto Pid Tuning
Jun 28, 2013 PID tuning theory and configuration guide for MultiWii Now updated for multiwii 1.9 P is the dominant part of PID and gets you in the ballpark for good flight characteristics. Basic PID Tuning - on the ground Set PID to the designers default recommended settings Hold the MulitiRotor securely and safely in the air. It is the first PID Controller designed for 32-bit processors and not derived from MultiWii. The strength of the auto-leveling correction applied during Angle mode is set by the parameter 'levelangle' which is labeled 'LEVEL Proportional' in the GUI. This can be used to tune the auto-leveling strength in Angle mode compared to Horizon mode.
PID tuning theory and configuration guide for MultiWii P is the dominant part of PID and gets you in the ballpark for good flight characteristics. Basic PID Tuning - on the ground. Apr 28, 2014 Multiwii auto level. Tie the quad down (or better setup for 'tuning on a String') and with the GUI connected run the motors with props on. Registered User. This is it without auto level, stock pid's. I have balanced the props and I am using Sunnysky 2212's. The props are 9047 turnigy slowfly props. I am going to do.
English • العربية • български • català • čeština • Deutsch • Ελληνικά • español • فارسی • français • hrvatski • magyar • italiano • română • 日本語 • 한국어 • lietuvių • Nederlands • norsk • polski • português • русский • Türkçe • українська • 中文(中国大陆) • 中文(台灣) • עברית • azərbaycanca • |
- PID Tuning using Transmitter Multiwii The MultiWii flight control software has the built-in functionality of using an attached LCD for viewing and adjusting PID settings. That would make tuning PID values so much easier without connecting to the computer and use the GUI every time.
- Oct 08, 2013 at first, it always flips on take off. Spent a long time troubleshooting, and i realiz.
- Most quadcopter software including Betaflight and KISS allows users to adjust PID values to improve flight performance. In this post I will try to explain what PID is, how it affects stability and handling of a drone, and also share some tips on how to tune PID. The Art of Quadcopter PID Tuning. Quadcopter PID tuning really is an art form.
PID tuning refers to the parameters adjustment of a proportional-integral-derivative control algorithm used in most repraps for hot ends and heated beds.
PID needs to have a P, I and D value defined to control the nozzle temperature. If the temperature ramps up quickly and slows as it approaches the target temperature, or if it swings by a few degrees either side of the target temperature, then the values are incorrect.
To run PID Autotune in Marlin and other firmwares, run the following G-code with the nozzle cold:
This will heat the first nozzle (E0), and cycle around the target temperature 8 times (C8) at the given temperature (S200) and return values for P I and D. An example from http://www.soliwiki.com/PID_tuning is:
For Marlin, these values indicate the counts of the soft-PWM power control (0 to PID_MAX) for each element of the control equation. The softPWM value regulates the duty cycle of the f=(FCPU/16/64/256/2) control signal for the associated heater. The proportional (P) constant Kp is in counts/C, representing the change in the softPWM output per each degree of error. The integral (I) constant Ki in counts/(C*s) represents the change per each unit of time-integrated error. The derivative (D) constant Kd in counts/(C/s) represents the change in output expected due to the current rate of change of the temperature. In the above example, the autotune routine has determined that to control for a temperature of 200C, the soft PWM should be biased to 92 + 19.56*error + 0.71 * (sum of errors*time) -134.26 * dError/dT. The 'sum of errors*time' value is limited to the range +/-PID_INTEGRAL_DRIVE_MAX as set in Configuration.h. Commercial PID controllers typically use time-based parameters, Ti=Kp/Ki and Td=Kd/Kp, to specify the integral and derivative parameters. In the example above: Ti=19.56/0.71=27.54s, meaning an adjustment to compensate for integrated error over about 28 seconds; Td=134.26/19.56=6.86s, meaning an adjustment to compensate for the projected temperature about 7 seconds in the future.
The Kp, Ki, and Kd values can be entered with:
In the case of multiple extruders (E0, E1, E2) these PID values are shared between the extruders, although the extruders may be controlled separately. If the EEPROM is enabled, save with M500. If it is not enabled, save these settings in Configuration.h.
For the bed, use:
and save bed settings with:
For manual adjustments:
- if it overshoots a lot and oscillates, either the integral gain needs to be increased or all gains should be reduced
- Too much overshoot? Increase D, decrease P.
- Response too damped? Increase P.
- Ramps up quickly to a value below target temperature (0-160 fast) and then slows down as it approaches target (160-170 slow, 170-180 really slow, etc) temperature? Try increasing the I constant.
See also Wikipedia's PID_controller and Zeigler-Nichols tuning method. Marlin autotuning (2014-01-20, https://github.com/ErikZalm/Marlin/blob/Marlin_v1/Marlin/temperature.cpp#L250 ) uses the Ziegler-Nichols 'Classic' method, which first finds a gain which maximizes the oscillations around the setpoint, and uses the amplitude and period of these oscillations to set the proportional, integral, and derivative terms.
Cooking mama games free download. Apr 01, 2020 -Make surprise dishes by combining 2 recipes.Watch realistic cooking videos for supported recipes.Watch an animated video of Mama's fun daily life. Cooking Mama: Let's cook! Office Create Corp. Educational Pretend Play. Food games for free. Cook Delicious Meals in one of the best Time Management Restaurant games!
Saving PID settings
You will need to commit your changes to EEPROM or your configuration.h file for them to be permanent.
To save to EEPROM use:M500
Modifying Marlin Autotune parameters
The default Marlin M303 calculates a set of Ziegler-Nichols 'Classic' parameters based on the Ku (Ultimate Gain) and the Pu (Ultimate Period), where the Ku and Pu are determined by searching for a biased BANG-BANG oscillation around an average power level that produces oscillations centered on the setpoint. (See https://github.com/ErikZalm/Marlin/blob/Marlin_v1/Marlin/temperature.cpp#L238 )
You can transform these 'Classic' parameters into the Zeigler-Nichols 'Some Overshoot' set with:
Or the Z-N 'No Overshoot' set:
Note that the multipliers for the autotuning parameters each have only one significant digit (implying 10% maximum precision), and that the other schemes differ by factors of 2 or 3. PID autotuning and tuning isn't terribly precise, and changes in the parameters by factors of 5 to 50% are perfectly reasonable.
In Marlin, the parameters that control and limit the PID controller can have more significant effects than the popular PID parameters. For example, PID_MAX and PID_FUNCTIONAL_RANGE, and PID_INTEGRAL_DRIVE_MAX can each have dramatic, unexpected effects on PID behavior. For instance, a too-large PID_MAX on a high-power heater can make autotuning impossible; a too-small PID_FUNCTIONAL_RANGE can cause odd reset behavior; a too large PID_FUNCTIONAL_RANGE can guarantee overshoot; and a too-small PID_INTEGRAL_DRIVE_MAX can cause droop.
PID Tuning by Commercial PID
If you have access to a PID controller unit and a compatible thermal probe that fits down into your hotend, you can use them to tune your PID and calibrate your thermistor.
Connection of the output of the PID to your heater varies depending on your electronics. (I used a 1K2:4K7 voltage divider to drop the 22V output of the PID to 5V for my bread-boarded VNP4904)
After the PID is connected you can use it to measure the nozzle temperature and correlate it with the thermistor readings and resistances.
Conversion from the commercial PID values of kP in %fullscale, Ti in seconds, and Td in seconds is as follows:
As an example, a $30 MYPIN TD4-SNR 1/16 DIN PID temperature controller and $10 type-K probe can hold a particular Wildseyed hotend with a 6.8ohm resistor at 185.0C+/-0.1C using 12V with about a 43.7% duty cycle, or 0.437*12*12/6.8=9.25W. Invoking the autotuning on the controller produces these parameters: P=0.8%/C, I=27s, D=6.7s. Converting these to Marlin PID values:
Differences between the results can be caused by physical differences in the systems, (e.g: the thermocouple is closer to the heater than the thermistor,) or by different choices of autotuning parameters (e.g.: the MYPIN TD4 autotuning process is a proprietary black box, while Marlin uses Zeigler-Nichols 'Classic' method.)
Multiwii Auto Pid Tuning Chart
The Temperature/resistance table below was developed by using the PID+thermocouple system to set temperatures on a sample hotend by controlling the heater while measuring the thermistor resistance. These values can be used with Nophead's http://hydraraptor.blogspot.com/2012/11/more-accurate-thermistor-tables.html or Marlin's https://github.com/ErikZalm/Marlin/blob/Marlin_v1/Marlin/createTemperatureLookupMarlin.py to create calibrated thermistor tables. The PID column collects the autotuning values produced by the PID controller for the indicated temperature. The kP,Ki,Kd lists the converted parameters.
Multiwii Auto Pid Tuning Tool
Temp | DutyCycle | Thermistor R | Commercial PID | Kp,Ki,Kd |
---|---|---|---|---|
60.0 | 6.0 | 31630 | ||
100.0 | 15.7 | 10108 | 1.1%/C, 35.5s, 8.8s | 2.81, 0.08, 3.13 |
120.0 | 22.5 | 5802 | 1.0%/C, 32.0s, 8.0s | 2.55, 0.08, 3.14 |
135.0 | 26.5 | 3967 | ||
150.0 | 28.5 | 2840 | 1.2%/C, 29.0s, 7.2s | 3.06, 0.10, 2.35 |
170.0 | 34.0 | 1829 | ||
185.0 | 43.7 | 1347 | 0.8%/C, 27s, 6.7s | 2.04, 0.08, 3.28 |
190.0 | 45.9 | 1200 | 0.8%/C, 26s, 6.5s | 2.04, 0.08, 3.18 |
200.0 | 51.0 | 977 |